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The selective withdrawal of a layered fluid from a reservoir has interesting pro- 
perties which are not present if the stratification is continuous. The problem 
investigated is that of finding the ratios of the discharges from each flowing layer 
when the total discharge from all layers is regulated at the outlet. It is shown 
that the ratios are determined by the requirement that the flow be smooth a t  
critical points in the flow, each critical point being a point at which the long-wave 
velocity on one of the interfaces is zero. If there are too many critical points, the 
flow is over-determined and becomes unsteady. It follows therefore that if the 
external conditions change slowly, such as in the slow draining of a reservoir, 
the flow alternates between intervals in which the flow ratios also change 
slowly and intervals in which the flow ratios oscillate unsteadily. An experiment 
is described in which the theoretical conclusions were tested for two-layer flow. 
Good agreement was obtained between theory and experiment. 

1. Introduction 
It is of considerable practical importance to understand all aspects of the 

selective withdrawal of a stably stratified fluid from a reservoir. Many of the 
problems involved are discussed in the review by Brooks & Koh (1969). The 
properties of the fluid discharged are determined by the properties of the fluid 
in the reservoir, by the geometry of the reservoir and by the total discharge 
through the outlet. 

Wood (1968) analysed the flow from a stably stratified reservoir through a 
horizontal contraction into an open channel. He showed that two-layer flow is 
determined by the geometry of the section of minimum width in the contraction 
together with the geometry of a section upstream of this point. It is well known 
that one-layer flow from a reservoir is determined solely by the geometry of the 
section of minimum width, which is referred to as the point of control. Wood 
showed that, for two-layer flow, there exists a second point of control, named 
the point of virtual control. He carried out experiments which confirmed the 
theoretical predictions. 

Similar methods of analysis have been applied to lock exchange flows (Wood 
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1970), layered fluid flow over a weir (Wood & Lai 1972a) and layered fluid flow 
from a reservoir into a closed conduit (Wood & Lai 1972b). The present investiga- 
tion is concerned with setting up a theory for multi-layered flow from a reservoir 
into a closed conduit, and with testing experimentally the theoretical conclusions. 

The common assumptions in all these models are that the effect of viscous 
forces on the flow properties is negligible, that the velocity profiles in each layer 
remain nearly uniform (particularly in the neighbourhood of points of control), 
and that the flow is steady. There is some modification of the uniform flow by 
viscous forces at solid boundaries and between layers, but attention is confined 
to situations where this effect is negligible. The steady-flow assumption means 
that the time taken for a particle to travel from the reservoir through the conduit 
is small compared with the time taken for streamline patterns to change as the 
reservoir drains. 

2. Theory 
The model analysed here is that of a stably stratified n-layer fluid in a reservoir 

being withdrawn through a contraction with a closed conduit. The notation for a 
two-layer flow is sketched in figure 1.  The base of the model is the horizontal 
plane y = 0, z is the horizontal variable in the flow direction, and the height and 
breadth of the contraction are y = Y ( x )  and z = B(x), where Y’(x) and B’(x) are 
everywhere negative. The layer densities in order of increasing height and 
decreasing magnitude are p,, p, . . . , p,, the corresponding reservoir depths are 
h,, h,, . .., hm, and the layer depths are yl(x), y2(z), ..., y,(z). The flow is assumed 
to be steady with volume fluxes Ql, Q,, . . ., Q, and a total volume flux Q. When 
k layers of fluid are flowing through the contraction, the interface between the 
flowing kth layer and the stationary (k+ 1)th layer ends on contact with the 
roof of the contraction. In  figure I ,  for example, where there are two flowing 
layers, this point of contact is denoted by C,. When there are k flowing layers, the 
corresponding point of contact is denoted by C,. 

Wood & Lai (1  972 b )  investigated theoretically and confirmed experimentally 
the model for single-layer flow and the transition to two-layer flow. They deter- 
mined the maximum single-layer flow and showed that i t  occurs when the 
interface is tangential to the roof of the contraction at the contact point C,, that 
is dy,/dx = d Yldx there. The energy equation for single-layer flow upstream of 
Cl is 

This equation holds at the point of contact, where y1 = Y ,  and for given up- 
stream conditions may be differentiated with respect to Y to determine the 
maximum Q,. It then yields 

(2.1) 8P1Q211(B2Y21) = (P1-Pz)dhl-Yl)- 

a t  C,. Considerable simplification is achieved here and in subsequent calculations 
if attention is confined to contractions whose shape satisfies YdBIBdY = con- 
stant. For this reason, the present theory and experiments relate to contractions 
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(h )  

FIGURE I.  Notation. (a)  Plan. ( b )  Elevation. 

of square cross-section, for which (2.2) becomes Y = +hl at the contact point C,. 
The maximum single-layer volume flux then satisfies 

When two layers are flowing, the equation for the energy difference across the 

(2.4) 

Yl+Y2 = Y ( 4  ( = B ( x ) ) ,  (2.5) 

interface inside the contraction downstream of the contact point C2 is 

i~iQ?l(B%;)  - BP~QE/(B~Y~)  = ( ~ i - ~ z ) d h i - ~ i ) *  

This equation, together with the total-depth equation 

determines yl(x) and y2(x)  downstream of C2 once Q1 and Q2 are known. The 
condition for smooth flow downstream of C2 is that the derivatives yla and y2% 
exist at all points in this region. The derivatives satisfy 

g-PiQ211(B2&) P~QE/(B~YZ) 
1 1 

The 2 x 2 matrix is singular a t  a critical point, this being a point a t  which the 
velocity of long waves on the interface is zero, or equivalently, a t  which the 
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internal Froude number is unity.? The condition that the derivatives exist at a 
critical point is that the coefficients in the two rows of (2.6) be proportional, that is 

(pi - P A  g-pi Q2,1(B2d) = ~2 QY(B2y; )  

= (pi Q2,1(B3y2,) - ~ z  Q 1 / ( B 3 d ) ) d B l d Y *  (2.7) 

(2.8) 

Equations (2.4), (2.5) and (2.7), together with the equation for the total volume 
flux 

are sufficient to determine the volume fluxes Q1 and Q2, as well as y l ,  y 2  and x, 
a t  a critical point downstream of C2. The critical point is the point of virtual 
control defined and discussed by Wood (1968). Although the total volume flux 
Q is set externally, the flow ratio Q,/Q, is determined by the geometry of the 
contraction at the critical point. 

The equations governing two-layer flow upstream of C2 are (2.4) together with 
the energy equation for the upper layer 

Qi + Q z  = Q (given), 

Equations (2.4) and (2.9) determine y l ( x )  and y 2 ( x )  upstream of C2 once Q1 and 
Q2 are known. The derivatives ylx  and yZx satisfy 

P ~ Q Y ~ B ~ Y ~ )  
2 B2 3)k) 

2 9 - P I  &W%) 
( ( p 1 - p k 2 - P 3 ) g  ( P ~ - P J ~ - P ~ Q ~ I (  ~ 2 )  Y Z X  

This 2 x 2 matrix is singular a t  a critical point upstream of C,. The condition 
that the derivatives exist a t  such a point is that the coefficients of the two row0 
of (2.10) be proportional. This condition and (2.4), (2.8) and (2.9) are sufficient 
to determine the volume fluxes Q, and Q2 as well as y l ,  y z  and x at a critical point 
upstream of C,. 

It can be seen that, in general, there must be only one critical point for which 
Bx =l= 0 in two-layer flow, for otherwise the flow is over-determined. The flow 
can be subcritical (in terms of the internal Froude number) upstream of C2 
through to a critical point downstream of C, in the closed conduit region, or it 
can have a critical point upstream of C2 in the open region and be supercritical 
through and downstream of C,. Since the equations for a critical point are 
different on the two sides of C,, there must be a discontinuity, in general, between 
the two possible types of flow. The two types of flow are referred to as closed- 
control flow and open-control flow respectively, and their solutions are now 
discussed for a contraction of square cross-section. 

Solution of (2.4), (2.5) and (2.7) for closed-control flow shows that y1 = Qh, at 
the critical point, that is, the depth of the lower layer a t  the critical point is a 

t Non-dimensional volume fluxes of the form (2.3) are sometimes referred to as Froude 
numbers. To be consistent with open-channel flow, it is more correct to define a Froude 
number here which is less than unity when long waves on the interface can propagate 
upstream and downstream, and greater than unity when they can only propagate down- 
stream. 



Selective withdrawal from a layered fluid 585 

constant fraction of its depth in the reservoir. The fraction is the same as that 
a t  the contact point Cl for maximum single-layer flow, because Cl becomes a 
critical point as soon as two-layer flow begins. The non-dimensional volume 
fluxes for two-layer closed-control flow are found to be 

(2.11b) 

where Y,  is the height of the contraction at  the critical point. Substitution in 
(2.8) determines YJh,, Q1 and Q2. The solution is valid provided that the flow is 
subcritical upstream of C,. It is necessary also that two-layer contact still occurs 
at C,, that is, 

The contact point C, is the point at which (2.4), (2.5) and (2.9) are simultaneously 
valid for the given Q1 and Q2. 

The only physically valid solution for open-control flow (with the critical 
point upstream of C,) is the self-similar solution of Wood (1968), satisfying 
yl/hl = yZ/h2 a t  all points upstream of C,. The flow ratio is independent of the 
total flux Q,  and is found to be 

(2.12) 

Note that, as the density difference p1 -p2 between the two layers tends towards 
zero, Q,/Q1 + h,/h,, or as expected, the flow velocities tend towards equality. The 
solution is valid provided that the flow is supercritical downstream of C, and 
contact is still occurring at C,. The similarity of the solution enables these 
conditions to be stated explicitly as 

provided that this range exists. The supercritical condition sets the upper bound 
and the condition a t  the contact point sets the lower bound. 

Bryant (1  974) calculated solutions for the progression from single-layer flow 
to closed-control two-layer flow, open-control two-layer flow and on to three- 
layer flow. The method of solution for each type of flow was by analytical reduc- 
tion of the governing equations as far as possible, followed by the Newton- 
Raphson numerical method for systems of algebraic equations. In  figures 3 (a)  
and (b )  below, the boundary between single-layer flow and closed-control two- 
layer flow was found directly from (2.3), and the closed-control solutions were 
calculated numerically from (2.8) and (2.11a, b) .  The contact point C2 was cal- 
culated numerically from (2.4), (2.5) and (2.9) with Q1 and Q2 given by (2 .11a,  b) .  
The upper boundary for closed-control two-layer flow, when 

dyl /dx + dy,/dx = d Y / d x  
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at C,, was then calculated using a refinement of the Newton-Raphson method to 
avoid difficulties with the zero Jacobianat this maximum flow. Similar approaches 
using a combination of analytical and numerical methods of solution proved 
successful for open-control two-layer flow and for three-layer flow. 

The calculations showed that, for certain values of the external parameters 
pl,  p2, p3, h,, h, and Q, the two types of steady two-layer flow overlapped, while 
for other values of these parameters, there was a gap between them. In  figure 3, an 
overlap occurs in one part of the two-layer flow region, while there is a gap 
between the solutions in another part. Where overlap occurs, there are two 
possible steady two-layer solutions for the given range of external parameters. 
Where there is a gap between the two types of steady two-layer flow, it was found 
experimentally that the flow becomes unsteady when the external parameters 
lie in the gap. The possibility of an overlap has not yet been investigated experi- 
mentally, but it seems probable that the flow history would determine which 
flow occurs. If the overlap is approached by continuous variation of the external 
parameters from the closed-flow region, it could be expected that the closed 
flow would persist into the region of overlap, with the reverse occurring if the 
region of overlap is approached from the open-flow region. In  this respect, it 
would be similar to a supercritical flow incident on a long smooth rise in an open 
channel, where for the same upstream or downstream controls, dependent only 
on the flow history, the flow can be supercritical over and beyond the rise or it 
can pass through a hydraulic jump upstream of the rise and be subcritical 
over and beyond the rise. 

The calculated solutions were continued to three-layer flow. It was found 
that a smooth transition from two-layer flow to three-layer flow can occur only 
when the interface a t  the contact point becomes tangential to the roof of the 
contraction. This contact point then becomes an additional critical point for the 
three-layer flow, and moves downstream as the three-layer flow starts. For 
small density differences between the layers (Boussinesq fluids) the smooth 
transition to three-layer flow can take place only from open-control two-layer 
flow, though there is still the possibility of discontinuous transition to three-layer 
flow from closed-control two-layer flow. For large density differences between 
the layers, the range of inequality (2.13) does not exist and there is no open- 
control two-layer flow. A smooth transition to three-layer flow can then take 
place from closed-control two-layer flow. 

The equations governing n-layered flow upstream of the contact point Cn are 
the equations for the energy differences across the interfaces, 

and the energy equation for the upper layer, 

(2.15) 

The flow downstream of the contact point C, is governed by the n - 1 equations 
. -  

(2.14) together with 
y1+y,+ ... + y n  = Y(.). (2.16) 
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The equation determining the layer slopes upstream of C, is 
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The equation determining the layer slopes downstream of C, is the same except 
that the final row of the n x n matrix is a row of 1’s and bn = d Y / d B .  

The n x n matrix in (2 .17)  is singular a t  no more than the n-  1 critical points 
upstream of Cn; at such points a long wave has zero velocity on one of the n - 1 
interfaces. Similarly, the corresponding n x n matrix for flow downstream of C, 
is singular a t  no more than n-  1 critical points downstream of C,. The n-layer 
flow is determined by a total of exactly n - I critical points in the two parts of the 
flow, since only then is the total number of unknown variables equal to the total 
number of available equations. If the n-layer flow resulted from a progression 
from single-layer flow through two-layer flow and so on, it is difficult to see how 
there could be less than n-  1 critical points, because each contact point from 
C, to Cn-l becomes a new critical point when one more layer begins to flow 
smoothly. On the other hand, since there can in principle be up to n - 1 critical 
points in both the open and the closed part of the flow, it could easily become 
over-determined if the total number of critical points in the two parts of the 
flow exceeded n - 1. When this occurs the solution fails and the flow becomes 
unsteady. The n-layer flow in the slow draining of a reservoir, for example, can 
be expected to consist of intervals during which the flow ratios change smoothly 
and slowly connected by intervals during which the flowratiososcillate unsteadily. 

3. Experiments 
Several experiments were performed to test the major features of the theory 

and to investigate the unsteady transition between the two types of steady 
two-layer flow. In  the experiments it was desirable for the transition between 
the two steady states to occur when the depths in the reservoir were reasonably 
large. It was also necessary to ensure that the unsteady effects should be clearly 
observable. This suggested that the gap between the two steady solutions 
should be as wide as possible. The theory showed that these requirements could 
both be satisfied by withdrawing a t  a relatively large rate. With the large 
discharge and the reservoir available (a 4.5 x 1.5 x 1.15 m high glass-sided tank) 
it would have been difficult to attempt to maintain the level of either layer 
constant by an inflow mechanism. The reservoir was large enough that for no 
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FIGURE 2. Experimental equipment. (a) Elevation. (b)  Plan. 

inflow the fall in both layers would be sufficiently slow for the flow to  be regarded 
as steady when it was assumed to be so. It was decided therefore to fill the 
reservoir with two layers, one fresh water and the other a dyed salt solution, 
and then to withdraw a t  a constant discharge. 

A timber contraction with a geometry defined by Y = B = 0 . 6 ~  was placed 
in the reservoir as in figure 2. This contraction had been used for a previous 
set of experiments, which showed that in spite of the relative steepness of the 
upper surface the uniform-flow assumption was adequate. An explanation may be 
found by considering (2.4). This equation relates the velocities on either side 
of the interface to the height of the interface, and is made usable by the reason- 
able assumption that the interface velocity may be replaced by the mean velocity 
&/(By) .  For a uniform velocity distribution this assumption is exact, and for 
more realistic velocity distributions, including an axisymmetric velocity distri- 
bution, i t  is a good approximation. The reservoir was filled with the two layers, 
and measurements of the levels of each layer were recorded a t  approximately 
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h, (4 
FIQURE 3 (a). For caption see next page. 

2min intervals after withdrawal began. From the changes in levels, the flow 
ratio of the two layers was deduced. Samples of the discharge were also taken 
during each experiment and were analysed later to provide independent veri- 
fication of the flow ratio of the two layers. Figures 3 (a )  and ( b )  show the results 
of two experiments. The density difference between the layers in the fist experi- 
ment was 0.29% and in the second experiment was 0.78%. The withdrawal 
rate in both experiments was 4-86 x iO-4ms/s. 

The initial depth of the lower layer was chosen to be sufficiently large that 
withdrawal began with single-layer flow. The first observations are of single- 
layer flow, and the two-layer flow began at the predicted lower layer depth in 
both experiments. Because of the scatter in the initial observations, the theo- 
retical solution sketched for the closed-control flow is that which provides the 
best fit over the initial range of data. Further solutions corresponding to different 
initial layer depths are sketched for comparison. There is a good fit between the 
theoretical solution and the experimental data in figure 3(a),  although the 
transition between closed-control and open-control flow in the experiment occurs 
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FIGURE 3. (a)  First experiment: (pz-pl ) /pl  = 0.29 yo. ( b )  Second experiment: 

(pz-pl ) /pl  = 0.78 %, Q = 4.85 x iO-4m3/s. 

+ , observations; - , theory; -*-, boundary of closed-control flow; - - -, boundary of 
open-control flow. 

later than predicted by the theory. The fit between theory and experiment in 
figure 3 ( 6 )  is less good, but the transition occurs closer to the position predicted 
theoretically. It should be remembered that the flow ratio plotted in the figures 
is determined by the flow a t  the critical point, and any experimental irregularity 
at the critical point has a significant effect on the flow ratio. A leaking seal near 
the critical point in one experiment changed the flow ratio dramatically. 

The unsteadiness at the transition consisted of an oscillation of the interface 
noticeably more rapid than that present during the rest of the experiment and 
more rapid than could be apparent in observations every 2 min. The theoretical 
solution for the open-control two-layer flow is a straight line through the origin. 
The line of best fit is drawn in figures 3 (a )  and ( 6 )  together with further lines for 
comparison. The unsteadiness in the gap between the closed-control and open- 
control two-layer flows means that there is no simple link between the steady 
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solutions in the two regions. Measurements ceased when the lower layer became 
too shallow, though it was observed that air entrainment (three-layer flow) 
began a t  the total depth predicted. 

4. Discussion 
The interesting property of steady layered flow is that the flow is controlled 

by the geometry at the critical points. As critical points move from one part of 
the flow geometry to another, the flow properties pass through an unsteady 
transition between two nearly steady regimes. The geometry of the present 
experiment was simple, but even so, an unsteady transition during the with- 
drawal of a layered fluid was an essential part of the flow. The flow properties 
could have been made more complex, for example, by introducing corners in 
the contraction, because a transition could occur each time a critical point 
passed over a corner. In  general, therefore, the flow of a layered fluid cannot 
necessarily be expected to change slowly when the external properties change 
slowly, but instead should be expected to pass through unsteady transitions 
between intervals in which the variation is slow. 
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